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Asynchronous development of the Benjamin-Feir unstable mode:
Solution of the Davey-Stewartson equation

Masayoshi Tajiri, Kiyohiro Takeuchi, and Takahito Arai
Department of Mathematical Sciences, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531

~Received 3 January 2001; published 29 October 2001!

The long time evolution of the Benjamin-Feir unstable mode in two dimension is described by the growing-
and-decaying mode solution to the Davey-Stewartson equation. The solution of the hyperbolic Davey-
Stewartson~the so-called Davey-Stewartson I! equation is analyzed to show that the resonance between line
soliton and growing-and-decaying mode exists. If the resonant condition is exactly satisfied, the growing-and-
decaying mode exists only in the forward region of propagation of soliton and the soliton is accelerated~or
decelerated!. Under the quasiresonant condition, the growing-and-decaying mode grows at first in the forward
region, and after the sequence of the evolution has done in the forward region the mode starts to grow in the
backward region of the soliton.
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I. INTRODUCTION

A weakly nonlinear, uniform, water wave train is unstab
to long wave modulational perturbations of the envelo
which is known as the Benjamin-Feir~B-F! instability @1,2#.
The long time evolution of a two-dimensional wave packe
described by the Davey-Stewartson~DS! equation @3–6#.
One of the important features of the soliton of the D
equation is the reverting of the unstable wave train
its initial state, the so-called Fermi-Pasta-Ulam recurren
It is known that the nonlinear evolution of the unstab
mode is described by the growing-and-decaying mode s
tion @7#.

Recently, the interactions between two-periodic solito
between the periodic soliton and line soliton and between
periodic soliton and algebraic soliton to the DS equat
have been investigated in detail@7–11#. It is shown that the
periodic soliton resonances exist in each case. Pelinov
pointed out the existence of the resonance between line
ton and growing-and-decaying mode@8#. He has shown tha
a new line soliton occurring as a result of the Benjamin-F
instability moves in the opposite direction with respect to
original soliton. The growing-and-decaying mode soluti
grows exponentially according to the linear instability at t
initial stage, which reaches the maximum amplitude a
some finite time and then damps out at a sufficient la
time. The growing-and-decaying mode exists substanti
during only a finite period in time, but the resonance betwe
line soliton and growing-and-decaying mode brings an in
nite phase shift to the line soliton phase. If the growing-a
decaying mode exists within only a finite time in reality, w
are very interested in the mechanism that brings about
infinite phase shift of the line soliton.

In this paper, the solution to the DS equation is analyz
to investigate the time evolution of the resonant interact
between line soliton and the growing-and-decaying mode
is shown that the existence of soliton changes the evolu
of the B-F instability drastically.
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II. RESONANCE BETWEEN LINE SOLITON AND
GROWING-AND-DECAYING MODE

The DS equation may be written as

H iut1puxx1uyy1r uuu2u22uv50,

vxx2pvyy2r ~ uuu2!xx50,
~1!

where p561, r is constant. Equation~1! with p51 and
p521 are called the DS I and DS II equations, respective
The interaction between line soliton and growing-an
decaying mode with respect to the DS I equation is studie
this paper. The solution describing the interaction can
obtained by theN-soliton solution of Satsuma and Ablowit
@12#.

The three-soliton solution to the DS I equation may
written as@12#

u5u0ei z
g

f
, v522~ ln f !xx ~2!

with

f 511eh11eh21eh31a~1,2!eh11h21a~1,3!eh11h3

1a~2,3!eh21h31A eh11h21h3, ~3!

g511eh11 if11eh21 if21eh31 if31a~1,2!

3exp@h11h21 i ~f11f2!#1a~1,3!

3exp@h11h31 i ~f11f3!#

1a~2,3!exp@h21h31 i ~f21f3!#

1A exp@h11h21h31 i ~f11f21f3!#, ~4!

where

z5kx1 ly2vt, ~5!

h j5K jx1L jy2V j t1h j
0 , ~6!
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v5k21 l 22ru0
2 , ~7!

sin2
f j

2
5

K j
22L j

2

2ru0
2

, ~8!

V j52kKj12lL j2~K j
21L j

2!cot
f j

2
, ~9!

a~ i , j !5

2ru0
2 sin

f i

2
sin

f j

2
cos

f i2f j

2
2KiK j1LiL j

2ru0
2 sin

f i

2
sin

f j

2
cos

f i1f j

2
2KiK j1LiL j

,

~10!

A5a~1,2!a~1,3!a~2,3!, ~11!

The growing-and-decaying mode solution to the DS
equation is given by@7#

u5u0ei (z1f1)
AM cosh~Vt1s12 if1!2cosh

AM cosh~Vt1s1!2cosh
, ~12!

v522b2
AM cosh~Vt1s1!cosh21

$AM cosh~Vt1s1!2cosh%2
, ~13!

where

h5bx1dy2gt1u, ~14!

V5~b21d2!cot
f1

2
, ~15!

g52kb12ld, ~16!

M5a~1,2!5
2

11cosf1
.1, ~17!

sin2
f1

2
5

d22b2

2ru0
2

, ~18!

s1 and u are arbitrary phase constants, which are obtai
by putting thex andy components of wave numbers,K j and
L j ( j 51,2) in the two-soliton solution as follows:K15K2*
5 ib, L15L2* 5 id. The existence condition for the nonsin
gular solution is given byM.1 for real f1. This solution
grows exponentially at initial stage and reaches a state
maximum modulation and after reaching maximum modu
tion, demodulates and finally returns to an unmodula
state.

It is well known that the line soliton solution can be o
tained by putting thex and y components of wave numbe
real constants in one-soliton solution. By putting thex andy
components of wave numbers in the three-soliton solutio
Eqs.~3! and ~4! as,
05662
I
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K15K2* 5 ib, L15L2* 5 id, K35P, L35Q,
~19!

we have the solution consisting of a line soliton a
growing-and-decaying mode,

u5u0ei z
g

f
, v522~ ln f !xx ~20!

with

f 511e2Vt1s1 cosh1
M

4
e22Vt12s1

1ejF11e2Vt1s1$Nr cosh2Ni sinh%

1
M uNu2

4
e22Vt12s1G , ~21!

g511exp~2Vt1s11 if1!cosh

1
M

4
exp~22Vt12s112if1!1ej1 if2

3F11exp~2Vt1s11 if1!

3$Nr cosh2Ni sinh%1
M uNu2

4

3exp~22Vt12s112if1!G , ~22!

where

j5Px1Qy2Gt1s2 , ~23!

sin2
f2

2
5

P22Q2

2ru0
2

, ~24!

G52kP12lQ2~P21Q2!cot
f2

2
, ~25!

N5Nr1 iNi5

2ru0
2 sin

f1

2
sin

f2

2
cos

f12f2

2
2 i ~bP2dQ!

2ru0
2 sin

f1

2
sin

f2

2
cos

f11f2

2
2 i ~bP2dQ!

,

~26!

s2 is an arbitrary constant.
The phase shift of the line soliton due to the growing-an

decaying mode is given by the amountC5 lnuNu ~or
2 lnuNu). C5` and 0 may be thought of as resonance b
tween line soliton and growing-and-decaying mode, the c
ditions of which are obtained by equating the denomina
and numerator ofN to zero, respectively:
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TABLE I. The classification of the resonant interaction by (f1 ,f2). The sign of G̃ @G̃5G22(kP

1 lQ)52(P21Q2)cot(f2/2)# specifies the time evolution: for the caseG̃,0, the time evolution is shown

in Fig. 3~A!#, for the caseG̃.0, the time evolution is shown as Fig. 3~B!. The symbols~A! and~B! indicate
the type of the time evolution illustrated as Figs. 3~A! and 3~B!, respectively.

(1)8 (2)8 (3)8 (4)8
0,f2/2,p/2 p/2,f2/2,p 2p/2,f2/2,0 2f,f2,2p/2

~1! 0,f1/2,p/2 (V,G̃)5(1,2) (1,1) (1,1) (1,2)

uNu5`,(A) 0,(B) 0,(B) `,(A)
~2! p/2,f1/2,p (2,2) (2,1) (2,1) (2,2)

0,(A) `,(B) `,(B) 0,(A)
~3! 2p/2,f1/2,0 (2,2) (2,1) (2,1) (2,2)

0,(A) `,(B) `,(B) 0,(A)
~4! 2p,f1/2,2p/2 (1,2) (1,1) (1,1) (1,2)

`,(A) 0,(B) 0,(B) `,(A)
lin
e

er
c

-
a

- e

e

cos
f11f2

2
50,

Q

P
5

b

d
5a, ~27!

and

cos
f12f2

2
50,

Q

P
5

b

d
5a. ~28!

There are two types of resonant interaction between
soliton and growing-and-decaying mode, which is classifi
by using the parameters (f1/2,f2/2) as shown in Table I.

At first we investigate the case(1)-(1)8 in the Table I:

0,f1/2,p/2 (V.0) and 0,f2/2,p/2 @G̃5G2(2kP
12lQ),0#. In this case, we can take the paramet
(P,Q,b,f1 ,f2) close to the plane in the parameter spa
where the resonant condition is satisfied, i.e.,uNu→`. We
study the time evolution of soliton in the following five pe
riods in time. The solution is approximated in each period
follows:

(p1)t→2` ~before the mode grows!

f 5
M

4
e2(2Vt1s1)~11ej1s3!, ~29!

g5
M

4
e2(2Vt1s11 if1)~11ej1s31 if2!, ~30!

wheres352 lnuNu, before growing, only the line soliton ex
ists in the wave field as shown in Fig. 1~a!.

~p2!t;
s1

V
@e2Vt1s1;O~1!#.

~a! s!s0

f .11e2Vt1s1 cosh1
M

4
e22Vt12s1, ~31!
05662
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d

s
e

s

g.11exp~2Vt1s11 if1!cosh

1
M

4
exp~22Vt12s112if1!. ~32!

~b! s;s0

f .11e2Vt1s1 cosh1
M

4
e22Vt12s1

1
M

4
exp~j1s322Vt12s1!, ~33!

g.11exp~2Vt1s11 if1!cosh

1
M

4
exp~22Vt12s112if1!

1
M

4
exp@j1s322Vt1s11 i ~f212f1!#. ~34!

~c! s0!s ~35!

f .ej1s3
M

4
e22Vt12s1, ~36!

g.
M

4
exp~j1s322Vt12s1!, ~37!

wheres is the coordinate of propagating direction of the lin
soliton (s5x/A11a21ay/A11a2), s0 is a position of the
line soliton. In this period, the mode is growing only in th
regions,s0, but the mode has not grown as yet ins0,s as
shown in Fig. 1~b!.

~p3! t;
s11 1

4 s3

V
@e2Vt1s1!1 but AuNue2Vt1s1;O~1!#.

f .11
M

4
exp~j1s322Vt12s1!, ~38!
2-3
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FIG. 1. The sequence of snapshots of the quasiresonant interaction between line soliton and growing-and-decaying mode as illu
Fig. 3~A!. The parameters are (k,l )5(0.10,0.10), (P,Q)5(1.403,1.068), (b,d)5(1.273,1.672), and (f1/2,f2/2)5(5p/18,2p/9). The
shots~a! to ~e! correspond to the periods (p1) to (p5) each to each.~a! i 522.0,~b! i 50.40,~c! t52.80,~d! t54.0,~e! t57.60. In this figure
x, y, andu are all dimensionless.
ta

m-

d

g.11
M

4
exp@j1s322Vt12s11 i ~f212f1!#.

~39!

This solution describes the line soliton in the resonant s
as shown in Fig. 1~c!. The mode existed in the regions
,s0 has already decayed. From the resonant condition
this case

f11f2

2
5

p

2
,

Q

P
5

b

d
5a, ~40!

we see that
05662
te

in

sin2
f212f1

2
5sin2S p2

f2

2 D5sin2
f2

2
, ~41!

2V1G22P~k1al !52P2~11a2!cot
f212f1

2

5P2~11a2!cot
f2

2
. ~42!

Therefore the resonant line soliton has the same wave nu
ber (P,Q5Pa) as the original ones and the valuef2
changes tof212f1, but the dispersion relations are satisfie
as shown in Eqs.~41! and ~42!. The line soliton has been
2-4
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FIG. 2. The sequence of snapshots of the quasiresonant interaction between line soliton and growing-and-decaying mode as illu
Fig. 3~B!. The parameters are (k,l )5(0.10,0.10), (P,Q)5(1.403,1.068), (b,d)5(1.273,1.672), and (f1/2,f2/2)5(5p/18,7p/9). The
shots~a!–~e! correspond to the periods (p1) to (p5) each to each.~a! t526.30, ~b! t524.30, ~c! t522.30, ~d! t520.30, ~e! t50.2.70.
In this figurex, y, andu are all dimensionless.
od
y

accelerated as a result of growth and decay of the m
existed ins,s0. The position of the line soliton is given b
j1 1

2 s3'0.

~p4! t;
s11 1

2 s3

V
@ uNue2Vt1s1;O~1!#, for s0,s,

f .ejS 11N e2Vt1s1 cosh1
M

4
uNu2e22Vt12s1D , ~43!
05662
e
g.ej1 if2S 11N exp~2Vt1s11 if1!cosh1

M

4
uNu2

3exp~22Vt12s112if1! D , ~44!

where we have neglectedNi , sinceuNi u!1. In this period,
the mode is developed where onlys0,s as shown in Fig.
1~d!.

~p5! t→1`
2-5
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f 511ej, ~45!

g511ej1 if2. ~46!

This solution shows the line soliton after the growth a
decay of the mode as shown in Fig. 1~e!. The line soliton has
gotten the phase shift22 lnuNu due to the growing-and
decaying mode.

The schematic diagram of this phenomenon in (s,t) plane
is shown in Fig. 3~A!. The lines in the figure are the worl
lines of line soliton hump and the wavy lines show t
growing-and-decaying mode.

The uNu→` resonances are possible in the regio
(1)-(4)8, (2)-(2)8, (2)-(3)8, (3)-(2)8, (3)-(3)8, (4)-(1)8,
and (4)-(4)8 besides the region(1)-(1)8. The diagram in
Fig. 3~A! illustrates the time evolution of the quasires
nances in the cases(1)-(1)8, (1)-(4)8, (4)-(1)8, and
(4)-(4)8 schematically. In a similar fashion, Fig. 3~B! shows
the time evolution of the quasiresonance in the regi
(2)-(2)8, (2)-(3)8, (3)-(2)8, and (3)-(3)8.

Next, we consider the case(1)-(2)8; 0,f1/2

,p/2 (V.0) andp/2,f2/2,p (G̃.0). In this case, we
can take the parameters so asN to go to zero, conditions tha
are given by

f12f2

2
5

p

2
,

Q

P
5

b

d
5a. ~47!

By the same discussion as the last case, we can study
evolution of the solution. The sequence of snapshots of
2 shows the evolution of the solution in this case.

The instability develops first in front of the line soliton~in
s0,s), as if the line soliton induced the instability. Then th

FIG. 3. ~A! The schematic diagram of the quasiresonance
tween line soliton and growing-and-decaying mode in thes-t plane.
The solid lines are the line soliton hum and the wavy lines are
growing-and-decaying mode. The marks (p1) to (p5) coincide with
the periods used in the discussion, respectively. The growing-
decaying mode begins to grow in the regions,s0 first. ~B! The
same diagram as~A!. The growing-and-decaying mode begins
grow in the regions.s0 first.
05662
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s
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line soliton is decelerated as a result of the instability and
wave field shifts to the intermediate state, a solution tha
given by

f 5
M

4
e22Vt12s1S 11

4

M
ej12Vt22s1D , ~48!

g5
M

4
exp~22Vt12s112if1!S 11

4

M
exp@j12Vt22s1

1 i ~f222f1!# D . ~49!

From the condition~47!, we see that

sin2
f222f1

2
5sin2S p2

f2

2 D5sin2
f2

2
, ~50!

G22V22P~k1al !52P2~11a2!cot
f222f1

2

5P2~11a2!cot
f2

2
, ~51!

which are the dispersion relations of the line soliton in t
intermediate state. This intermediate state lasts abo
2 lnuNu. The mode instability backward the line soliton set
the growth at the end of the intermediate state. Finally,
line soliton is accelerated and returns to the original soli
with the ending of the mode. The time evolution of th
quasiresonance is illustrated by the diagram in Fig. 3~B!.

The uNu→0 resonances are possible in the regio
(1)-(3)8, (2)-(1)8, (2)-(4)8, (3)-(1)8, (3)-(4)8, (4)-(2)8,
and (4)-(3)8 besides the region(1)-(2)8. The time evolu-
tion of the quasiresonances in the cases(2)-(1)8, (3)-(1)8,
(2)-(4)8, and (3)-(4)8 and in the cases(1)-(2)8, (1)-(3)8,
(4)-(2)8, and (4)-(3)8 are illustrated schematically by th
diagrams in Figs. 3~A! and 3~B!, respectively.

III. CONCLUSIONS

We have investigated the time evolution of the quasire
nant interaction between line soliton and growing-an
decaying mode. Under the quasiresonant condition, the m
develops first in the forward region of propagation of the li
soliton. The line soliton is accelerated as a result of
growth and decay of the mode existed in the forward reg
and the wave field shifts to the intermediate state, where
only line soliton exists. This intermediate state persists o
a comparatively long time interval. After sufficiently lon
time, the mode starts to grow in the opposite side of the l
soliton. The existence of soliton changes the evolution of
growing-and-decaying mode drastically as if the line solit
dominated the evolution of the instability in the whole regi
of the wave field.
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