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Asynchronous development of the Benjamin-Feir unstable mode:
Solution of the Davey-Stewartson equation
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The long time evolution of the Benjamin-Feir unstable mode in two dimension is described by the growing-
and-decaying mode solution to the Davey-Stewartson equation. The solution of the hyperbolic Davey-
Stewartsor(the so-called Davey-Stewartsondquation is analyzed to show that the resonance between line
soliton and growing-and-decaying mode exists. If the resonant condition is exactly satisfied, the growing-and-
decaying mode exists only in the forward region of propagation of soliton and the soliton is accelerated
decelerated Under the quasiresonant condition, the growing-and-decaying mode grows at first in the forward
region, and after the sequence of the evolution has done in the forward region the mode starts to grow in the
backward region of the soliton.
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I. INTRODUCTION Il. RESONANCE BETWEEN LINE SOLITON AND
GROWING-AND-DECAYING MODE

A weakly nonlinear, uniform, water wave train is unstable  The DS equation may be written as
to long wave modulational perturbations of the envelope, , 5
which is known as the Benjamin-FeiB-F) instability [1,2]. U Pyt Uy +r{u“u—2uv =0,
The long time evolution of a two-dimensional wave packet is U= PUyy— T ([U[?) =0,
described by the Davey-StewartséDS) equation[3—6].
One of the important features of the soliton of the DSWherep==1, r is constant. Equatioril) with p=1 and
equation is the reverting of the unstable wave train toP=—1 are called the DS I and DS Il equations, respectively.
its initial state, the so-called Fermi-Pasta-Ulam recurrencel Ne interaction between line soliton and growing-and-
It is known that the nonlinear evolution of the unstable decaying mode with respect to the DS | equation is studied in

mode is described by the growing-and-decaying mode soluhis paper. The soll_Jtion des_cribing the interaction can be
tion [7] obtained by theéN-soliton solution of Satsuma and Ablowitz

. . . . 12].
Recently, the interactions between two-periodic solltons,[ . . .
y P The three-soliton solution to the DS | equation may be

between the periodic soliton and line soliton and between th(\?vritten as[12]
periodic soliton and algebraic soliton to the DS equation
have been investigated in detff-11]. It is shown that the

o e o - TS
periodic soliton resonances exist in each case. Pelinovsky u=uge froU= 2(Inf),y (2)
pointed out the existence of the resonance between line soli-
ton and growing-and-decaying mofg]. He has shown that ,iih
a new line soliton occurring as a result of the Benjamin-Feir
instability moves in the opposite direction with respecttothe f=1+e7+e72+e+a(1,2) e’ 72+a(1,3)e” " 73
original soliton. The growing-and-decaying mode solution . o
grows exponentially according to the linear instability at the +ta(2,3em" et AenT T, ©)
initial stage, which reaches the maximum amplitude after
some finite time and then damps out at a sufficient large

@

g=1+ent¢14entiday entidstg(1,2)

time. The growing-and-decaying mode exists substantially Xexf n1+ 7o+i(py+ do)]+a(l,3)
during only a finite period in time, but the resonance between _
line soliton and growing-and-decaying mode brings an infi- Xexd 71+ nat+i(prt ¢3)]

nite phase shift to the line soliton phase. If the growing-and- .
decaying mode exists within only a finite time in reality, we Ta23exdnyt nati(dat da)l
are very interested in the mechanism that brings about the +Aexd 71+ mot p3ti( P+ dot Pa)], 4
infinite phase shift of the line soliton.

In this paper, the solution to the DS equation is analyzedvhere
to investigate the time evolution of the resonant interaction

between line soliton and the growing-and-decaying mode. It {=kxtly-ot, ®)
is shown that the existence of soliton changes the evolution 0
of the B-F instability drastically. 7= Kix+Ljy=Qjt+ 77, )
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w=k>+1%2=ru3, 7) Ki=K3=iB, L;=Li=is, Kz=P, L3=Q,
(19
¢ KI-L? . - , .
sih= =11, (8 we have the solution consisting of a line soliton and
2ruj growing-and-decaying mode,
2,12 ¢J i£g
Q=2kK;+2IL;— (Kf+L; )co 9) U=Uoe* ¢, v=—2(Inf),y (20)
with
2ru0sm%sm%cos(ﬁ'Td)J KiK;j+LiL;
a(IvJ) ¢] ¢| ¢J ' f:1+e—Qt+a’1 cosy+ _e—ZQH—Zu’l
2ruosm?sm?cosT KiK;j+LiL; 4
10
(10 +ef 1+e M oUN, cosy—N; sin 7}
A=a(l,2a(1,3a(2,3, (12)
MINJ?
. . . +—e 20t+204 (21)
The growing-and-decaying mode solution to the DS | 4 '
equation is given by7]
g=1l+exp—Qt+o,+i¢p1)cosy
s a JM cos{Qt+ o, —i ;) —cosy W S
Uu=Uupe ) M .
JM cost{Qt+ o) —cosy + 4 XM~ 20+ 20+ 2i $p)+eftiee
VM cosi{Qt+o;)cosy—1
v=—2p% A : 7 > (13 X|1+exp —Qt+oi+igy)
{VM cosiQt+ ;) —cosn}
M|N|?
where X{N, cosp—N; sin} + |4 |
7= BX+ Sy — yt+6, (14
Xexp(—2Qt+20,+2i¢q) |, (22
Q=(p*+ %) coty ¢1 (15)
where
y=2kB+2l134, (16) E=Px+Qy-Tt+o,, (23
_ __ = ¢ P2_Q2
M=a(12) 1+cos¢l>1’ (17 sn2 2= , (24)
2rug
L, =P
Sif? == = 22 (18 I'=2kP+21Q ~(P?+Q?)cot &2 (25)
o, and @ are arbitrary phase constants, which are obtained b by b
by putting thex andy components of wave numbets; and 2ru sm?sm?zcoslTZ_.(gp 5Q)
L; (J=1,2) in the two-soliton solution as follows;=K3 N=N. +iN: =
=ip, L,=L3=i6. The existence condition for the nonsin- oru2 S|n¢—smﬁco b1t by _i(BP-50)
gular solution is given byM>1 for real ¢»;. This solution 0= 272 2
grows exponentially at initial stage and reaches a state of (26)

maximum modulation and after reaching maximum modula-

tion, demodulates and finally returns to an unmodulatedr, is an arbitrary constant.

state. The phase shift of the line soliton due to the growing-and-
It is well known that the line soliton solution can be ob- decaying mode is given by the amounit=In|N| (or

tained by putting thex andy components of wave number —In|N|). ¥ =~ and 0 may be thought of as resonance be-

real constants in one-soliton solution. By putting thendy  tween line soliton and growing-and-decaying mode, the con-

components of wave numbers in the three-soliton solution irditions of which are obtained by equating the denominator

Egs.(3) and(4) as, and numerator oN to zero, respectively:
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TABLE |I. The classification of the resonant interaction by,(¢,). The sign of [f:F—Z(kP
+1Q)=— (P?+ Q?)cot(¢,/2)] specifies the time evolution: for the caEe: 0, the time evolution is shown

in Fig. 3(A)], for the casd~“>0, the time evolution is shown as FiglB3. The symbolgA) and(B) indicate
the type of the time evolution illustrated as FigéABand 3B), respectively.

(1) (2)' (3) (4)
0< ¢, l2< 72 T2< Ppol2< —w2< ¢,/2<0 — <P, <—ml2
(1) 0< @py/2< /2 QD =(+,-) (+.+) (+,+) (+,7)
IN|=2,(A) 0,(B) 0,(B) o, (A)
(2) ml2< pif2< (—,7) (—,+) (—=.1) (=)
0,(A) «,(B) «,(B) 0,(A)
(3) — w/2< p1/2<0 (-,-) (—,+) (=.+) (=)
0,(A) «,(B) «,(B) 0,(A)
4) —a<Pp2<—7/2 (+,-) (+,+) (+,+) (+,-)
o, (A) 0,(B) 0,(B) o, (A)
0¢1+¢2:0' gzﬁza’ 7 g=1+exp —Qt+o,+i¢,)cosy
2 P 6 M
+Zexp(—ZQt+20'1+2i¢l). (32
and
(b) s~s
cos—¢1_¢2=0 9—éza (28 i
2 P s

M
f21+efﬂt+ol COS7]+ y e*ZQ’[JrZa'l
There are two types of resonant interaction between line

soliton and growing-and-decaying mode, which is classified M
by using the parameterss(/2,¢,/2) as shown in Table I. + 7 expEt 03— 204 20y, (33)
At first we investigate the cagel)-(1)’ in the Table I
0< ¢ /2<m/2 (Q>0) and 0<¢,l2<m/2 [T =T—(2kP g=1+exp—Qt+o,+i¢i)cosy
+21Q)<0]. In this case, we can take the parameters M
(P.Q.B,¢1,¢») close to the plane in the parameter space + X~ 20+ 207+ 2i )
where the resonant condition is satisfied, i|&lj—c. We
study the time evolution of soliton in the following five pe- M
riods in time. The solution is approximated in each period as + Zexp[§+ 03— 20t + o1 ti(dr+2¢h1)]. (39
follows:
(p1)t— — (before the mode grows (©) sp<s (35
M 2(—Qt+oq) o M
f= Ze U(1+eft3), (29 f:e5+"3ze‘2m+2"l, (36)
M 2(~OQt+oy+idy) Etogtig M
g=¢€ 1T1P)(1+e57737192), (30 gzzexp(§+03—29t+2(rl), (37)

whereas=2 In|N|, before growing, only the line soliton ex- wheres is the coordinate of propagating direction of the line

ists in the wave field as shown in Fig(al spliton _(s= x/\/1+.a2+ gy/\/1+ a?), So is a pqsition of _the
line soliton. In this period, the mode is growing only in the

regions<sg, but the mode has not grown as yetsg<s as

(pz)t~%[e*m+vl~0(1)]. shown in Fig. 1b).
o1+ 105 ~0t+ TNle—Qt+
(a) s<sg (p3) t"‘T[e 71<1 but |N|e 71~0(1)].
-Qt+o M —-20t+20 M
f=1+e 1cosp+ Ze 1, (3D f=1+ Zexp(§+03—2m+2(rl), (39
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FIG. 1. The sequence of snapshots of the quasiresonant interaction between line soliton and growing-and-decaying mode as illustrated by
Fig. 3(A). The parameters are&k()=(0.10,0.10), P,Q)=(1.403,1.068), B,6)=(1.273,1.672), and&1/2,¢»/2)=(57/18,27/9). The
shots(a) to (e) correspond to the periodp{) to (ps) each to eacha) i = —2.0,(b) i =0.40,(c) t=2.80,(d) t=4.0,(e) t=7.60. In this figure
X, Y, andu are all dimensionless.

g*—vl—i—%exp[§+a3—2(2t+201+i(¢2+2¢1)]. sinzgi)zzwl—sinz(w— d;z)—sinz(iz, (41)
(39
b2t 2¢

This solution describes the line soliton in the resonant state ~ 2Q+T' —2P(k+al)=—P%(1+ aZ)COtT
as shown in Fig. ). The mode existed in the regios

<sy has already decayed. From the resonant condition in 5 )
this case =P%(1l+a )cot7. (42
b1t ™ Q B _ 40  Therefore the resonant line soliton has the same wave num-
2 20 P 5 @ (40 per (P,Q=Pa) as the original ones and the valug,
changes tap,+ 2 ¢4, but the dispersion relations are satisfied
we see that as shown in Egs(41) and (42). The line soliton has been
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FIG. 2. The sequence of snapshots of the quasiresonant interaction between line soliton and growing-and-decaying mode as illustrated by
Fig. 3(B). The parameters are,()=(0.10,0.10), P,Q)=(1.403,1.068), B,5)=(1.273,1.672), and&:/2,¢,/2)=(57/18,77/9). The
shots(a)—(e) correspond to the periodg{) to (ps) each to each(@) t=—6.30,(b) t=—4.30,(c) t=—2.30,(d) t=—0.30,(e) t=0.2.70.

In this figurex, y, andu are all dimensionless.

accelerated as a result of growth and decay of the mode N _ Mo
existed ins<s,. The position of the line soliton is given by ~ g=€""'%2| 1+ Nexp(—Qt+ o, +i¢;)cosy+ Z|N|

X exp—20t+20,+2i¢y) |, (44)

o1t 305 COtho
(pa) t~—¢g—[INle F71~0(1)], for sp<s, where we have neglected, , since|N;|<1. In this period,
the mode is developed where ordy<s as shown in Fig.
1(d).
' M
~af + —Qt+oq 4+ — 2, 20t+209
f=e \1 Ne cosy+ [N|“e , (43 (Pe) t— 40
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line soliton is decelerated as a result of the instability and the
wave field shifts to the intermediate state, a solution that is
given by

f= %9_29t+201( 1+ $e§+20t—2(r1) , (48)

M 4
g=zexp(—29t+2(rl+ 2i ¢>1)( 1+ Mexqur 20t—204

ti(Pa—=2¢1)]]. (49
From the condition47), we see that
S S
FIG. 3. (A) The schematic diagram of the quasiresonance be- sir? $2—2¢ —sir?| 7— @ :Sinzﬁ (50)
tween line soliton and growing-and-decaying mode instieplane. 2 2 2’
The solid lines are the line soliton hum and the wavy lines are the
growing-and-decaying mode. The marlg ) to (ps) coincide with by20
the periods used in the discussion, respectively. The growing-and- _ _ D2 2 27 P
decaying mode begins to grow in the regisfis, first. (B) The I'-20-2P(k+al)=—-P(1+a%co 2
same diagram a8A). The growing-and-decaying mode begins to s
grow in the regiors>s first. 2 2 2
=Pe(1+ 1
(1+a%)cot=, (51
f=1+¢€f, (45)
g=1+ettid2, (46) which are the dispersion relations of the line soliton in the

intermediate state. This intermediate state lasts about

This solution shows the line soliton after the growth and—In|N|. The mode instability backward the line soliton set up

decay of the mode as shown in Figell The line soliton has the growth at the end of the intermediate state. Finally, the

gotten the phase shift-2 In|N| due to the growing-and- line soliton is accelerated and returns to the original soliton

decaying mode. with the ending of the mode. The time evolution of this
The schematic diagram of this phenomenonst)plane  quasiresonance is illustrated by the diagram in Fi§)3

is shown in Fig. 8). The lines in the figure are the world ~ The [N|—0 resonances are possible in the regions

lines of line soliton hump and the wavy lines show the(1)-(3)", (2)-(1)", (2)-(4)", (3)-(1)", (3)-(4)", (4)-(2)",

growing-and-decaying mode. and (4)-(3) besides the regio(1)-(2)’. The time evolu-
The |N|]— resonances are possible in the regionstion of the quasiresonances in the caE2p(1)’', (3)-(1)’,

(1)-(4)", (2)-(2), (2)-(3), (3)-(2), (3)-(3), (4)-(1),  (2)-(4)', and (3)-(4) and in the casetl)-(2)’, (1)-(3)',

and (4)-(4) besides the regiof1)-(1)". The diagram in (4)-(2)", and (4)-(3) are illustrated schematically by the

Fig. 3(A) illustrates the time evolution of the quasireso- diagrams in Figs. @\) and 3B), respectively.

nances in the case¢l)-(1)’, (1)-(4), (4)-(1), and

(4)-(4)" schematically. In a similar fashion, Fig(B® shows

the time evolution of the quasiresonance in the regions

(2)-(2)", (2)-(3)", (3)-(2)", and (3)-(3). We have investigated the time evolution of the quasireso-
Next, we consider the case(1)-(2)"; 0<¢i/2 nant interaction between line soliton and growing-and-

<7/2 (2>0) andw/2< p,/2< (f>0). In this case, we decaying mode. Under the quasiresonant condition, the mode

can take the parameters soNuo go to zero, conditions that develops first in the forward region of propagation of the line

IIl. CONCLUSIONS

are given by soliton. The line soliton is accelerated as a result of the
growth and decay of the mode existed in the forward region

b=, ™ Q B and the wave field shifts to the intermediate state, where the

2 20 P s & (47) only line soliton exists. This intermediate state persists over

a comparatively long time interval. After sufficiently long
By the same discussion as the last case, we can study thiene, the mode starts to grow in the opposite side of the line
evolution of the solution. The sequence of snapshots of Figsoliton. The existence of soliton changes the evolution of the
2 shows the evolution of the solution in this case. growing-and-decaying mode drastically as if the line soliton
The instability develops first in front of the line solit@im dominated the evolution of the instability in the whole region
$0<S), as if the line soliton induced the instability. Then the of the wave field.
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